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ABSTRACT

Storm severity in the mid-Atlantic region of the United States is examined using lightning, radar, and

model-derived information. Automated Warning Decision Support System (WDSS) procedures are de-

veloped to create grids of lightning and radar parameters, cluster individual storm features, and data mine the

lightning and radar attributes of 1252 severe and nonsevere storms. The study first examines the influence of

serial correlation and uses autocorrelation functions to document the persistence of lightning and radar pa-

rameters.Decorrelation times are found to vary by parameter, storm severity, andmathematical operator, but

the great majority are between three and six lags, suggesting that consecutive 2-min storm samples (following

a storm) are effectively independent after only 6–12min. The study next describes the distribution of lightning

jumps in severe and nonsevere storms, differences between various types of severe storms (e.g., severe wind

only), and relationships between lightning and radar parameters. The 2s lightning jump algorithm (with

a 10 flashesmin21 activation threshold) yields 0.92 jumps h21 for nonsevere storms and 1.44 jumps h21 in

severe storms. Applying a 10-mmmaximum expected size of hail (MESH) threshold to the 2s lightning jump

algorithm reduces the frequency of lightning jumps in nonsevere storms to 0.61 jumps h21. Although radar-

derived parameters are comparable between storms that produce severewind plus hail and those that produce

tornadoes, tornadic storms exhibit much greater intracloud (IC) and cloud-to-ground (CG) flash rates.

Correlations further illustrate that lightning data provide complementary storm-scale information to radar-

derived measures of storm intensity.

1. Introduction

Advances in lightning datasets and storm analysis

techniques are improving our understanding of relation-

ships between storm-scale processes and lightning pro-

duction. The emergence and expansion of total lightning

datasets hold great promise for researchers and opera-

tional forecasters. Darden et al. (2010) found that in-

corporating real-time total lightning data into severe

weather forecasting procedures improved warning con-

fidence, and suggested potential improvement in short-

term warning lead times. However, they also noted the

limited use of lightning information in the National

Weather Service (NWS) convective warning program.

They suggested that this was due to the lack of total

lightning information at regional and national scales,

limited knowledge about relationships between light-

ning and severe weather, and a cultural legacy of per-

ceiving lightning data as less important than traditional

radar and satellite products.

Many studies have shown that sudden increases in

intracloud (IC) lightning flash rate, colloquially known as

lightning jumps, often precede severe weather occurrence1

(e.g., Goodman et al. 1988; MacGorman et al. 1989;

Williams et al. 1989, 1999; Buechler et al. 2000; Lang

et al. 2000; Goodman et al. 2005; Wiens et al. 2005;

Tessendorf et al. 2007; Steiger et al. 2007; Gatlin and

Goodman 2010; Darden et al. 2010; Schultz et al. 2009,

2011). The lightning jump signature is a useful proxy for

identifying strengthening updrafts and increasing storm
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intensity and helps forecasters to identify storms ac-

quiring severe potential and determine where a storm is

in its life cycle (Darden et al. 2010). Lightning jumps also

have been observed prior to severe hail and wind. For

example, Goodman et al. (2005) examined a severe

pulse thunderstorm that exhibited a strong increase in

IC flash rate 9min before damaging winds occurred at

the surface. Gatlin and Goodman (2010) and Schultz

et al. (2009, 2011) have quantified this relationship to

develop lightning jump algorithms that provide an early

indication (warning) of severe weather. Using lightning

data alone, the algorithm described by Schultz et al.

(2011) predicted severe weather with a 20.65-min lead

time, a 79% probability of detection (POD), and a 36%

false alarm rate (FAR).

The National Lightning Detection Network (NLDN;

Orville 2008) has provided cloud-to-ground (CG) light-

ning data to NWS forecasters for over a decade, and a

select few NWS offices also receive IC data from local

Lightning Detection and Ranging (LDAR; Boccippio

et al. 2001) and Lightning Mapping Array (LMA; Rison

et al. 1999) networks. The Washington, D.C., Lightning

Mapping Array (DCLMA; Krehbiel 2008) is a joint dem-

onstration project between the National Aeronautics

and Space Administration (NASA), National Oceanic

and Atmospheric Administration (NOAA), New Mex-

ico Institute of Mining and Technology, and 10 local site

hosts. The DCLMA has been operational since 2007,

providing detailed 3D lightning observations that inform

decision makers about severe weather and lightning

threats. The network consists of 10 sensors that monitor

very high frequency (VHF; MHz) radio waves (radia-

tion sources) emitted by lightning. Since IC discharges

radiate mainly in the VHF range (Betz et al. 2004) and

VHF radio waves travel along a line of sight, the

DCLMA is most sensitive to IC flashes and the upper

portions of CGflashes (Thomas et al. 2001). Conversely,

the NLDN is most sensitive to low (very low) frequency

[LF (VLF); kHz] emissions from CG return strokes,

which radiate mainly in this range (Betz et al. 2004).

The combination of DCLMA and NLDN observations

provides detailed insights into the structure and evo-

lution of lightning activity in the mid-Atlantic region.

Forecasterswill continue to rely on traditionalmethods

(e.g., radar and satellite) for monitoring thunderstorms

despite improving lightning detection technologies and

the development of lightning jump algorithms (Schultz

et al. 2009). Therefore, it is important to determine the

degree to which lightning data complement the more

traditional radar-derived measures of storm intensity.

Updraft trends are especially useful in assessing storm

severity (MacGorman et al. 2008), but can be difficult

to obtain from radar in real time (Weber et al. 1998;

MacGorman et al. 2008). NWS forecasters currently use

individual plan position indicator (PPI) slices to monitor

rapidly evolving storms, but some storms remain under

sampled, especially those distant from the radar, be-

cause of radar latency and beam geometry. Several

studies have shown that dual-polarization signatures (e.

g., ZDR) are helpful for discerning updraft in-

tensification (Illingworth et al. 1987; Loney et al. 2002;

Romine et al. 2008), and the nationwide upgrade to

dual-polarization technology (Ryzhkov et al. 2005) will

increase the use of these data in operations. Nonethe-

less, radars require time to scan volumes while LMA

networks provide continuous 3D lightning information.

Much like the rapid sampling provided by phased array

radar (Heinselman et al. 2008; Heinselman and Torres

2011; Bluestein et al. 2010), knowledge of rapidly

changing lightning patterns might increase warning

confidence by augmenting existing and future radar and

satellite products.

The immensity of lightning and radar datasets, to-

gether with somewhat limited software capabilities, has

restricted the scope of many previous studies. However,

the Warning Decision Support System–Integrated In-

formation (WDSS-II; Lakshmanan et al. 2007) and

geographic information system (GIS) software now

provide an ideal framework for developing large light-

ning and radar datasets and determining relationships

between them. Automated WDSS-II procedures have

been developed to create grids of lightning and radar

parameters, cluster individual storm features, and data

mine lightning and radar attributes from severe and

nonsevere storms. These procedures allow streamlined

database development and analysis, help minimize the

manual inspection of storm features while maximizing

accuracy, and facilitate detailed analysis of lightning and

radar parameters in many severe and nonsevere storms.

This study focuses on the mid-Atlantic region of the

United States where varying terrain and lifting mecha-

nisms determine both the timing (seasonal and diurnal)

and type (wind, hail, and tornado) of severe weather. The

region experiences a mix of convective modes (e.g., dis-

crete supercells, isolated pulse storms, forward-propagating

multicell structures, and bowing line segments). Meso-

scale influences on storm development are strongly

controlled by variations in the underlying surface. Ter-

rain in the study area varies from mountains in the west

(elevations of 600–1200m) to coastal plains, bodies of

water, and complex coastlines in the east (Fig. 1a). Oro-

graphic thermal forcing dominates western (mountain-

ous) portions of the study domain, while the sea breeze

strongly influences convection in the coastal regions.

The goal of this study is to combine information

about the near-storm environment, radar-defined storm
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structure, and both LMA and NLDN characteristics to

better define relationships between lightning, radar, and

storm severity. Based on the assumption that rapidly

updating 3D lightning data can provide more timely

insights into storm evolution than radar, this study ex-

amines ways by which lightning and radar data can com-

plement each other and thereby help provide improved

warnings of severe storms. The following sections seek

to demonstrate that lightning and radar datasets are

complementary, and provide forecasters with context as

lightning data and applications become more widely

implemented. The study documents interesting rela-

tionships between lightning and radar parameters that

should motivate future analyses, but does not provide

physical explanations for each. The storm analysis tech-

niques and resulting storm database are described first

FIG. 1. (a) Overview of the mid-Atlantic study domain. Circles denote the locations of the

WSR-88D radars in Dover, DE (gray), and Sterling, VA (black); squares signify the locations

of LMA sensors during 2007 (red) and additional sensors added during 2009 (blue); and range

rings represent 100-, 150-, and 200-km radii from the center of the DCLMA network (38.958N,

77.138W). (b) The total number of severe wind (blue), hail (green), and tornado (red) reports

and the number of storms in our dataset within 150 km of the DCLMA during each month

(2007–09).
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(section 2). Section 3a then investigates serial correla-

tion in the dataset and documents the persistence of

lightning and radar parameters. Finally, section 3b ex-

amines the distribution of lightning jumps in severe and

nonsevere storms, illustrates differences between severe

storm categories (nonsevere, severe wind only, hail only,

wind plus hail, and tornadic), and quantifies relation-

ships between lightning and radar parameters.

2. Data and methods

a. Radar and lightning grids

We used a variety of data sources and two software

packages to examine the lightning and radar character-

istics (Table 1) of many individual storms. Data sources

included Weather Surveillance Radar–1988 Doppler

(WSR-88D) data, Rapid Update Cycle (RUC) hourly

analyses (Benjamin et al. 2004), NLDN-reported CG

lightning characteristics, total lightning information from

the DCLMA (Krehbiel 2008), and quality-controlled se-

vereweather reports from the NOAANational Climatic

Data Center’s (NCDC) Storm Data publication.

The aforementioned data sources were merged using

WDSS-II (Lakshmanan et al. 2006). WDSS-II contains

algorithms that extract near-storm environmental vari-

ables from hourly RUC analyses, compute reflectivity

and velocity parameters from single or multiple WSR-

88Ds, and ingest lightning data from the NLDN and

LMA networks. We computed many 3D radar param-

eters bymerging data (Lakshmanan et al. 2006) from the

WSR-88Ds in Sterling, Virginia, and Dover, Delaware

(Fig. 1a), with near-storm environmental information

from hourly 20-kmRUC analyses (Benjamin et al. 2004).

Although RUC analyses do not perfectly represent true

atmospheric conditions, they do provide better spatial

and temporal resolution than radiosonde soundings.

Rapidly updating radar grids (2-min intervals) were

created in WDSS-II using interpolation techniques

and the most recent elevation scans from each radar

(Lakshmanan et al. 2006). Several studies have exam-

ined the use of interpolation techniques to create 3D

multiradar grids (e.g., Trapp and Doswell 2000; Askelson

et al. 2000; Zhang et al. 2005; Lakshmanan et al. 2006).

Lakshmanan et al. (2006) summarized this previous

work and demonstrated that their intelligent formula-

tion (implemented in WDSS-II) accounts for the lack of

time synchronization between radars, inaccurate time

stamps on radar data, varying radar beam geometry with

range, vertical gaps between radar scans, storm move-

ment, differing radar calibrations, and beam blockage

due to terrain. The present study uses the default ex-

ponential weighting function objective analysis scheme

implemented inWDSS-II (Zhang et al. 2005; Lakshmanan

et al. 2006), and both radars are required to be scanning

using the same volume coverage pattern (VCP).Merged

radar parameters (Table 1) were computed on a 1 km3
1 km 3 1 km grid with 20 vertical levels.

Existing WDSS-II algorithms ingested the NLDN

data and created CG flash densities at user-specified

spatial and temporal resolutions. We also combined and

modified existing WDSS-II algorithms to create grids of

positive CG (1CG) percentage, as well as 1CG and

negative CG (2CG) multiplicity (return strokes) and

estimated peak current (Ip, kA). Although the NLDN-

derived CG grids were created at 2-min intervals, each

2 km3 2 km grid cell recorded the most recent 10min of

CG flashes to increase the number of flashes used to

compute statistics (e.g., average multiplicity). Conver-

sely, we used only 2min of LMAobservations to compute

2km 3 2km LMA grids every 2min. This temporal

inconsistency limits our ability to directly compare the CG

andLMAparameters (e.g., IC/CG ratio).Many questions

remain concerning the occurrence and distribution of

weak 1CG reports (Biagi et al. 2007; Cummins and

Murphy 2009; Rudlosky and Fuelberg 2010, 2011).

TABLE 1. Examples of the many lightning and radar parameters

that are tracked within individual storms and discussed in this

paper.

Abbreviation Description Unit

H30above263K Height of 30-dBZ echo

above 2108C
km

H50above273K Height of 50-dBZ echo

above 08C
km

MESH Max expected size of hail mm

Rain rate Avg rain rate mmh21

LayerAvgRef Avg reflectivity between

08 and 2208C
dBZ

Top30dBZ Max height of 30-dBZ

echo

km

VIL Vertically integrated

liquid

kgm22

Divergence Storm-top divergence

(above 10 km)

s21

Size Storm size km2

totalLMA Total LMA flash rate Flashesmin21

LMA–FED LMA flash extent density Flashes km22min21

LMA–FID LMA flash initiation

density

Flashes km22min21

VILMA Vertically Integrated

LMA

Sources km22min21

HtMaxLMA Height of max LMA km

totalCG Total CG flash rate Flashesmin21

cgdensneg 2CG flash density Flashes km22min21

cgmultneg 2CG multiplicity Strokes

cgpeakneg 2CG estimated peak

current (Ip)

kA

Perpos Percentage of CG flashes

that are 1CG

%
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Cummins and Murphy (2009) suggested that 1CG dis-

charges with estimated peak current less than 20 kA are

a mixture of CG and IC pulses. Based on findings by

Biagi et al. (2007), we removed weak1CG reports with

estimated peak current less than 15 kA.

WDSS-II contains algorithms that ingest LMA data

and create both source- and flash-based products. LMA

networks report the 3D locations of VHF radiation

‘‘sources’’ that are emitted as lightning channels accel-

erate (Rison et al. 1999). Source-based LMA products

that we calculated include the column density of LMA

sources (VILMA), the maximum LMA source density

at any 1-km level (MaxLMA), and the height at which

the MaxLMA occurs (HtMaxLMA). Most previous

studies have examined LMA flash distributions rather

than source-based LMA products (e.g., Williams et al.

1999; Goodman et al. 2005; MacGorman et al. 2008). A

WDSS-II algorithm described by MacGorman et al.

(2008) was used to consolidate individual LMA sources

into flashes based on spatial and temporal criteria. Pre-

vious studies differ on the number of sources required to

define an LMA flash [ranging from 1 to 10 sources; e.g.,

Williams et al. (1999); Lang et al. (2004); Schultz et al.

(2009)]. We used the default settings in which the flash

consolidation distance thresholds vary with range from

the LMA center, but specified that all flashes must con-

tain at least 3 individual LMA sources (instead of the

default 10 sources) to account for the lower detection

efficiency of the DCLMA (versus the Oklahoma LMA).

Only sources detected by at least six sensors were in-

cluded in the dataset to limit contamination by radio

frequency (RF) noise. Flash-based LMA products [e.g.,

flash extent density (FED), flash initiation density (FID),

and flash rate] were computed on a 2 km 3 2 km grid

with 1-km vertical resolution. Since detection efficiency

decreases with range from the network’s center, this

study only examines storms entirely within 150 km of the

DCLMA center (38.958N, 77.138W; Fig. 1a). No attempt

was made to link the LMA and NLDN flashes, so the

LMAparameters described herein count both IC flashes

and the upper portions of CG flashes.

b. Data mining storm attributes

Lightning and radar parameters were examined

within individual storms using a WDSS-II algorithm

(w2segmotion) that identifies and tracks radar- or LMA-

defined storm features (Lakshmanan et al. 2009) and ex-

tracts information from other gridded fields (Lakshmanan

and Smith 2009). The algorithm is a modification of a

common image processing technique (watershed trans-

form; Najman and Schmitt 1996) that identifies local

maxima and their regions of support (foothills) based on

user-defined thresholds (Lakshmanan et al. 2009). We

automated w2segmotion to track individual storm areas

and output their lightning and radar characteristics to

a database at 2-min intervals. The algorithm allowed us

to select the field to be tracked (lightning or radar pa-

rameters), define the minimum size of features, and set

thresholds to facilitate consistent tracking of coherent

features.

Lakshmanan et al. (2009) described the w2segmotion

thresholds that are required to identify and track storm

features. We tracked storms based on their reflectivity

at 2208C (Ref20C) since that choice appeared to best

isolate discrete storms. The same thresholds were used

for all 61 case study days. We specified a maximum

Ref20C of 62.5 dBZ, a minimum of 25 dBZ, an in-

crement of 12.5 dBZ, a maximum range (depth) of

37.5 dBZ, and a minimum size (saliency) of 100 km2.

The w2segmotion algorithm first searches for one or

more maxima in the defined field (Ref20C). A maxi-

mum is defined if its area-averaged Ref20C exceeds

62.5 dBZ. The threshold is then decreased by one in-

crement (12.5 dBZ) to 50 dBZ, and the algorithm again

searches for maxima, continuing the incremental search

down to a minimum of 25 dBZ.

The algorithm then searches for a region surrounding

each maximum that meets the minimum size (saliency)

criterion of 100 km2 and exceeds the new threshold of

area averaged Ref20C (i.e., maximum reflectivity minus

12.5 dBZ). If a supporting region is not identified for

a particular maximum, the threshold is decreased an

additional increment to search for a supporting region.

If necessary, this search continues down to a maximum

depth (range of Ref20C) of 37.5 dBZ. Each maximum

must be surrounded by a supporting region to be iden-

tified and tracked by w2segmotion.

WDSS-II computes user-defined lightning and radar

characteristics for each trackable storm feature, pro-

ducing a database at 2-min intervals for all storms that

occur on a selected day. Several operators (e.g., average

and maximum) were used to extract gridded informa-

tion for each storm and time, producing many variations

of the lightning and radar parameters. For each storm

and time,we calculated both the average of all 2 km3 2km

pixels within the storm’s tracking boundaries as well as

the maximum value in any 2km 3 2km pixel. Although

w2segmotion attempts to assign a unique storm iden-

tifier to each coherently tracked feature throughout

its entirety (Lakshmanan et al. 2009), splits and merg-

ers complicate this process. Therefore, we manually

inspected each storm to determine if WDSS-II had

assigned different identifiers to what appeared to be

the same feature at different times during the track-

ing period. If so, we consolidated the data points from

the different identifiers into a single storm file. Each
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storm was required to contain at least seven 2-min

samples.

The resulting storm database then was inspected using

GIS. We first displayed all 2-min storm centroid points

and selected storms of interest based on their duration,

path, and distance from the radar and DCLMA sensors.

Locations of severe weather reports from Storm Data

were then overlaid on the storm centroids to determine

each storm’s severity (severe versus nonsevere based on

the NWS criteria). The severe designation is applied to

the lifetime of the storm, regardless of the timing of the

severe weather report. Although this approach helps

limit the influence of timing uncertainties in the storm

reports, it also decreases differences between the severe

and nonsevere distributions of lightning and radar char-

acteristics. Severe storms were further subdivided into

severe wind only, severe hail only, severe wind plus hail,

and tornadic (with or without wind/hail). Several studies

have described errors and uncertainties in the Storm

Data publication (e.g., Witt et al. 1998; Williams et al.

1999; Trapp et al. 2006), but it remains the most acces-

sible and accurate means for locating and classifying

severe storms (Schultz et al. 2009). Despite our careful

examination of storm reports using GIS, reporting er-

rors may contribute some ambiguity to our storm se-

verity categories. The final storm database included 868

nonsevere and 384 severe storms (Table 2), 163 (77)

produced only severe wind (hail), 131 produced severe

wind plus hail, and 13 produced tornadoes.

3. Results and discussion

a. Serial correlation in consecutive storm samples

It is important to examine the influence of our sam-

pling interval on the statistical distributions of light-

ning and radar characteristics. Assuming that each 2-min

storm sample is independent of those before and after

will exaggerate the statistical significance of any differ-

ences in the distributions. Time series of atmospheric

variables always have some degree of autocorrelation,

also denoted serial correlation (von Storch and Zwiers

1999). Autocorrelation is defined as the correlation of

a set of values with itself, therebymeasuring the degree of

serial dependence in a time series. Autocorrelation can

be computed for various lags, with the number of lags

being the number of time intervals that the series is

shifted before recomputing the correlation. An autocor-

relation function represents the autocorrelations for

a series of lags. Autocorrelation is relatively large when

sampling at short time intervals, such as our consecutive

2-min storm samples. This temporal autocorrelation

must be addressed to accurately assess the statistical

significance of the lightning and radar distributions.

The present study uses two methods to account for

serial correlation: 1) creating a subset of approximately

independent samples (von Storch and Zwiers 1999) and

2) computing effective sample sizes (Ne; Leith 1973).We

computed effective sample sizes (Ne) for use in calcu-

lating means and standard errors, and used subsets of

approximately independent samples to compute corre-

lations. Mean values presented herein retain all 2-min

storm samples, but the standard errors are computed

using Ne instead of N. Autocorrelation functions were

computed for each storm parameter (and storm severity

category) to determine the decorrelation time or num-

ber of lags before the correlation decreases to less than

1/e (;0.3679; Leith 1973). The decorrelation time rep-

resents the time between effectively independent sam-

ples and is used to determine the Ne (Leith 1973).

Specifically, a decorrelation time of four lags (8min)

suggests that every fourth sample of 2-min data is ef-

fectively independent and that Ne 5 N/4.

Autocorrelation functions were computed separately

for each parameter within each storm that was sampled

a minimum of 30 times (i.e., 60-min duration). Separate

decorrelation times (effective sample sizes) also were

computed for each storm severity category (nonsevere,

wind, hail, wind plus hail, and tornado) and mathemat-

ical operator (i.e., maximum and average storm values).

The decorrelation time for each storm severity category

is the average of the decorrelation times for all individual

storms within that category. Results reveal that decorre-

lation times vary by parameter, severity, andmathematical

operator, but the great majority are between three and six

lags, suggesting that consecutive 2-min samples (following

a storm) are effectively independent after only 6–12min.

Although the fine temporal resolution (2min) of our

lightning and radar datasets complicates statistical anal-

yses, it also provides an opportunity to investigate storm

TABLE 2. Columns display the number of storms and storm

centroid points that occur within 150 km of the DCLMA center, as

well as the total and average durations (6standard errors) for all

storms and each category of storm severity. The duration (h) is

equal to the number of 2-min storm points multiplied by 2min and

divided by 60min.

Category

Storm

count

Storm

points

Total duration

(h)

Avg duration

(min)

All 1252 36 248 1208.3 57.9 61.38

Nonsevere 868 18 878 629.3 43.5 61.11

Severe 384 17 370 579.0 90.5 63.16

Wind 163 6169 205.6 75.7 64.29

Hail 77 2933 97.8 76.2 66.08

Wind 1 hail 131 7326 244.2 111.9 65.71

Tornado 13 942 31.4 144.9 618.34
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persistence. Specifically, the decorrelation time can be

considered a persistence time scale (von Storch and

Zwiers 1999). For time series of different variables with

common time increments, relative decorrelation times

are useful for comparing system ‘‘memory’’ (von Storch

and Zwiers 1999). Thus, these statistical methods allow

quantitative comparisons of the persistence of indi-

vidual lightning and radar parameters, as well as the

variation of persistence between the different storm se-

verity categories and mathematical operators. Figure 2

shows that average storm values (solid) are more persis-

tent than maximum values (dashed) for the composite

of all lightning and radar parameters listed in Table 1

(Fig. 2a), LMA flash initiation density (LMA–FID;

Fig. 2b), storm-top divergence (Fig. 2c), and rain rate

(Fig. 2d). This finding is expected since the maximum

value in a storm can be located at a different 2 km 3
2 km pixel every 2min, while the average value is based

on all 2 km 3 2 km pixels in a storm every 2min.

Figures 3 and 4 illustrate differences between severe and

nonsevere storms and source-based versus flash-based

LMA products. Lightning and radar parameters are

more persistent in severe storms than nonsevere storms

(Fig. 3). The decorrelation time for the maximum ex-

pected size of hail (MESH) is approximately three lags

(6min) in nonsevere storms (Fig. 3c) compared tomore

than six lags (12min) in tornadic storms (Fig. 3a). A

similar relationship exists for LMA flash extent density

(LMA–FED), which is effectively independent every

six lags (12min) in storms producing severe wind plus

hail (Fig. 3b) versus every three lags (6min) in nonsevere

storms (Fig. 3d). Figure 4a reveals that source-based

LMA products (e.g., VILMA) are more persistent than

flash-based LMA products (i.e., LMA–FID and LMA–

FED) in severe wind plus hail storms. This relationship

only exists between LMA–FID andVILMA in nonsevere

storms (Fig. 4b), which will require further investigation.

The greater persistence of source-based LMA products

supports the use of flash-based LMA products for iden-

tifying severe storms based on lightning jumps (as done

by Schultz et al. 2009, 2011). Specifically, rapid changes

may bemore easily identified in time series of flash-based

FIG. 2. Autocorrelation functions for average storm values (solid) andmaximum storm values (dashed)

for (a) all lightning and radar products listed in Table 1, (b) LMAflash initiation density (LMA–FID), (c)

storm-top divergence, and (d) rain rate. Decorrelation times (i.e., when the autocorrelation drops below

1/e; horizontal dashed lines) are marked with arrows on the horizontal axis. Results show that average

storm values (solid) are more persistent than maximum storm values (dashed).
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LMA products than in time series of the seemingly

‘‘smoother’’ source-based LMA products.

b. Severe and nonsevere storms

Lightning characteristics are now examined alongside

traditional radar-derived measures of storm intensity in

severe and nonsevere storms. Recall that a severe storm

is defined as any storm that was severe at some time

during its life span (as determined by Storm Data re-

ports). This approach may introduce errors if a storm is

only severe for a small portion of its lifetime. Since

nonsevere periods are included in the severe class for

long-lived storms, this approach decreases differences

between the severe and nonsevere distributions of light-

ning and radar characteristics. Nonetheless, the approach

does help limit the influence of timing uncertainties in

the Storm Data reports. The following discussion docu-

ments many interesting observations, but does not pro-

vide physical explanations for each. Rather the findings

are presented to motivate future research. Furthermore,

our study only documents storms in one geographical

region, so it will be important to confirm these obser-

vations outside the mid-Atlantic region.

Table 2 documents the distribution of the 1252 storms

(36 248 2-min storm samples) in our database that occur

entirely within 150 km of the DCLMA center (38.958N,

77.138W). Most of our storms occur during June, July,

and August (Fig. 1b). The average duration of the ‘‘All’’

storms category is approximately 1 h (57.9min; Table 2),

meaning that the database contains more than 1200 h

of lightning and radar time series. The dataset includes

more than twice as many nonsevere storms (868 non-

severe versus 384 severe), but severe storms (90.5min)

last approximately twice as long as nonsevere storms

(43.5min), so the total periods of data for each are

comparable (severe 5 579.0 h, nonsevere 5 629.3 h).

Recall that the lightning and radar distributions are

influenced by the WDSS-II operator used to compute

them (i.e., average versus maximum storm values). Al-

though both columns in Table 3 represent means of all

36 248 storm samples, the average column is based on all

pixels in a storm at 2-min intervals; whereas the maxi-

mum column only considers the maximum individual

pixel every 2min. Results indicate that the average

values are more representative of previously published

climatological values than the maximum values. For

FIG. 3. Autocorrelation functions (with standard errors) for the maximum expected size of hail

(MESH) in (a) tornadic and (c) nonsevere storms; and (b),(d) likewise for LMA flash extent density

(LMA–FED). Note that lightning and radar parameters are more persistent in severe storms than

nonsevere storms.
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example, the average 2CG multiplicity (2.63; Table 3)

and estimated peak current (217.3 kA) are more similar

to the climatology of the northeast United States (2.43

and 216.9 kA; Rudlosky and Fuelberg 2010) than are

themaximum values (4.57 and227.6 kA). Furthermore,

the average rain rate (19.3mmh21) is more representa-

tive of rainfall from entire storm areas than is the max-

imum rain rate (90.2mmh21), which only characterizes

the maximum 2km 3 2 km pixel in each storm.2 None-

theless, since we are interested in storm severity (i.e.,

when andwhere storms aremost intense), the remainder

of this section examines maximum values, with the

exception of lightning flash rates (flashesmin21) and

1CG percentage.

Since lightning jump algorithms are the most common

operational application of total lightning data, it is im-

portant to examine the distribution of jumps in severe

and nonsevere storms. Schultz et al. (2009) examined six

ways to define the ‘‘jump’’ in their lightning jump algo-

rithm, and showed that a 2s configuration performed

best, yielding an 87% POD and a 33% FAR. Schultz

et al. (2011) expanded their analysis to 711 storms and

found a 79% POD and 36% FAR. Their algorithm also

requires at least 10 flashesmin21 before activation so

that the normal behaviors of nonsevere thunderstorms

and nonsevere stages of severe thunderstorms are not

misclassified as severe (Schultz et al. 2009).

The 2s lightning jump algorithm (Schultz et al. 2009)

was applied (with and without flash density thresholds)

to each storm in our dataset that lasted at least 30min

(331 severe and 521 nonsevere). The 2s algorithm with

no flash density threshold identifies lightning jumps in

76.4% (90.6%) of nonsevere (severe) storms (Table 4).

Use of a simple flash rate threshold (10 flashesmin21)

reduces the fraction of jumps in nonsevere (severe)

storms to 53.7% (83.9%). Severe and nonsevere storms

exhibit a total of 812 and 479 lightning jumps, re-

spectively (not shown), and fewer nonsevere storms

exhibit more than one lightning jump (22.8%) than se-

vere storms (58.9%; not shown). Since severe storms

typically last longer than nonsevere storms, we also ex-

amined the number of lightning jumps per hour. The

FIG. 4. Autocorrelation functions for LMA flash initiation den-

sity (LMA–FID; red), LMA flash extent density (LMA–FED;

blue), and vertically integrated LMA (VILMA; green) for (a) se-

vere wind plus hail storms and (b) nonsevere storms. Note that the

source-based LMA product (i.e., VILMA) is more persistent than

flash-based LMA products (FID and FED).

TABLE 3. Each column represents a mean (6standard errors) of

all 36 248 storm points, but the average column characterizes all

pixels in a storm every 2min, whereas the maximum column only

considers the value of the maximum individual pixel in a storm

every 2min. Note that estimated peak current is abbreviated Ip,

max reflectivity refers to the maximum grid cell value at any 1-km

vertical level, and that the average values are more representative

of climatology than the maximum values.

Parameter Avg Max Units

MESH 4.1 60.06 14.3 60.24 mm

Rain rate 19.3 60.30 90.2 60.66 mmh21

Max reflectivity 41.8 60.13 58.1 60.10 dBZ

H30above263K 2.8 60.04 6.2 6.05 km

Top30dBZ 8.0 60.05 11.9 60.06 km

HtMaxLMA 8.2 60.04 11.9 60.06 km

LMA–FED 0.37 60.01 1.45 60.04 Flashes

km22min21

LMA–FID 0.03 60.001 0.35 60.01 Flashes

km22min21

2CG flash density 0.01 60001 0.13 60.002 Flashes

km22min21

2CG multiplicity 2.63 60.038 4.57 60.077 Strokes

2CG Ip 217.3 60.29 227.6 60.49 kA

1CG multiplicity 1.63 60.119 1.68 60.125 Strokes

1CG Ip 23.7 61.18 24.3 61.25 kA

2Note that the rain-rate estimates are likely contaminated by

hail, and that our study predates the ongoing dual-polarization

WSR-88D upgrade that will help address this issue.
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2s algorithm (with a flash density threshold) yields

0.92 jumps h21 for nonsevere storms and 1.44 jumps h21

in severe storms (Table 5). Despite use of a flash rate

threshold, the frequency of jumps in nonsevere storms

suggests that additional steps should be taken to reduce

these false alarms.

Since inclusion of radar-derived measures of storm

intensity might improve the performance of the light-

ning jump algorithm, we next examine lightning and

radar characteristics during 2s lightning jumps. Light-

ning jumps in severe storms exhibit a greater average

change in flash rate with time (DFRDT; 15.9 versus

9.9 flashesmin22), total LMA flash rate (totLMA; 96.7

versus 54.0 flashes min21), and MESH (22.6 versus

14.8 mm) than lightning jumps in nonsevere storms

(Table 6). Although the automated tracking procedures

cause changes in storm shape and size that influence

flash rate, DFRDT, and lightning jump occurrence,

Table 6 shows that the average change in size is only

16.3 6 1.12 km2 (13.3 6 1.35 km2) during 2s lightning

jumps in severe (nonsevere) storms. Furthermore, very

few jumps (,1%) occur concurrently with large shifts

in storm size (.10% growth; not shown). This indicates

that the automated tracking procedures produce few

erroneous jumps.

Figure 5 displays histograms of LMAflash rate (Fig. 5a),

DFRDT (Fig. 5b), and MESH (Fig. 5c) during lightning

jumps in severe (red) and nonsevere (blue) storms. Less

than 15% of lightning jumps in severe storms have

LMA flash rates between 10 and 25flashesmin21 (Fig. 5a)

compared to more than 35% having rates greater than

85flashesmin21. The difference is even more pronounced

forMESH (Fig. 5c), with,2% (;34%) of lightning jumps

in severe storms exhibiting values less than 5mm (greater

than 25mm). These findings suggest that a simple MESH

threshold might reduce the number of lightning jumps in

nonsevere storms (i.e., reduce the FAR).

Applying a 10-mm MESH threshold to the 2s light-

ning jump algorithm further reduces the fraction of non-

severe storms exhibiting a jump from 53.7% to 37.2%

(Table 4), while the fraction of severe storms with jumps

only decreases from 83.9% to 77.9%. The MESH thresh-

old also reduces the frequency of jumps in nonsevere from

0.92 to 0.61 jumps h21 (Table 5). Figure 6 shows the

cumulative fraction of all lightning jumps that occur in

severe (red) and nonsevere (blue) storms based on

MESH thresholds. Less than 30% of lightning jumps

with MESH less than 5mm occur in severe storms,

whereas more than 60% of lightning jumps with MESH

values greater than 5mm occur in severe storms. Thus,

when a jump occurs, the larger the MESH the greater

the likelihood the storm is, was, or will become severe.

This finding suggests that MESH values might increase

forecaster confidence that a particular jump corresponds

to impending severe weather, and suggests that future

versions of the lightning jump algorithm should consider

including radar parameters.

Approximately 15% of severe storms exhibit no

lightning jumps (Table 4). Schultz et al. (2011) identified

specific environments in which the lightning jump al-

gorithm may need to be altered to enhance its utility

(e.g., low flash rate environments). In the future, it

may be possible to include near-storm environment in-

formation and/or radar-derived parameters to help tune

the lightning jump algorithm and improve its perfor-

mance under differing conditions. For example, severe

hail-only storms exhibit fewer lightning jumps per hour

(1.16 jumps h21; Table 5) than severe wind-only (1.38),

TABLE 4. The fraction of severe and nonsevere storms that exhibit

lightning jumps using the 2s algorithm described by Schultz et al.

(2009, 2011). Results from three algorithm configurations are shown:

1) no flash density threshold, 2) requires at least 10flashesmin21

before activation, and 3) requires at least 10flashesmin21 and

maximum expected size of hail (MESH) .10mm.

No flash

rate

threshold .10 flashesmin21

.10 flashesmin21

and

MESH . 10mm

Nonsevere 76.4 53.7 37.2

Severe 90.6 83.9 77.9

TABLE 5. The fraction of storms exhibiting lightning jumps and the average number of lightning jumps per hour in each storm severity

category, using the 2s algorithm with a minimum flash rate threshold of 10 flashesmin21 (Schultz et al. 2009, 2011). The third column

shows the frequency of jumps using both the LMA (10flashesmin21) and MESH (.10mm) thresholds.

Fraction of storms with 2s lightning

jumps (LMA threshold)

Avg No. of 2s lightning

jumps per hour (LMA threshold)

Avg No. of 2s lightning jumps per

hour (LMA 1 MESH threshold)

Nonsevere 53.7 0.92 0.61

Severe 83.9 1.44 1.25

Wind only 80.3 1.38 1.07

Hail only 82.5 1.16 0.98

Wind 1 hail 88.7 1.58 1.47

Tornado 91.7 1.68 1.45
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severe wind plus hail (1.58), and tornadic (1.68) storms.

This observationmay be related to the fact that lightning

rates sometimes decrease during storm intensification,

likely during wet hail growth (e.g., Emersic et al. 2011).

Improved understanding of relationships between light-

ning jumps and specific severe weather types may

also improve the operational utility of lightning jump

algorithms.

Differences between severe and nonsevere storms are

next illustrated using mean lightning and radar charac-

teristics (Tables 7–9). Recall that the mean values are

based on all 2-min storm samples, but the standard er-

rors are computed using Ne instead of N (Ne 5 N/4;

Fig. 2a). Each of the mean comparisons described below

were found to be significant using a two-sample t test,

with p values much less than 0.01. In addition to lasting

longer (Table 2), severe storms are larger than non-

severe storms (420.0 versus 320.7 km2; Table 7). Severe

storms also exhibit stronger radar-derived parameters

(Table 7) and greater LMA (Table 8) and 2CG flash

rates (Table 9) than nonsevere storms. ThemeanMESH

is 9.0mm greater in severe storms (19.0mm) than non-

severe storms (10.0mm; Table 7), and the 30-dBZ

echo-top height (Top30dBZ) is 1.7 km higher in severe

storms (12.8 versus 11.1 km). Both the LMA flash rate

(53.4 flashesmin21; Table 8) and 2CG flash rate

(23.4 flashesmin21; Table 9) also are greater in severe

storms than nonsevere storms (20.0 LMAflashesmin21

and 9.8 2CGflashesmin21).

Several additional differences are evident when

storms are categorized by the type of severe weather

they produce. Hail-only storms exhibit the lowest mean

Top30dBZ (11.7 km; Table 7) and both the smallest

LMA (25.2 flashesmin21; Table 8) and2CG flash rates

(12.1 flashesmin21; Table 9). Despite having similar

values of MESH and rain rate, the wind-only storms

exhibit greater LMA and CG flash rates and much

greater2CGmultiplicity and estimatedpeak current than

hail-only storms (Table 9). These findings likely are due in

part to the larger average size of the wind-only storms

(474.8km2) than the hail-only storms (342.0km2). Greater

LMA flash rates and stronger2CG characteristics in the

wind-only storms suggest that more charge is available

for producing IC and CG flashes than in the hail-only

storms. The severe wind-only and hail-only storms

exhibit weaker values of MESH and rain rate than the

wind plus hail and tornadic storms. The mean MESH

(rain rate) is;15mm (;95mmh21) in the wind-only and

hail-only storms, compared to MESH exceeding 22mm

TABLE 6. Mean (6standard errors) change in flash rate with

time (DFRDT), LMA flash rate, maximum expected size of hail

(MESH), and change in storm size during 2s lightning jumps that

occurred in severe and nonsevere storms.

DFRDT

(flashesmin22)

LMA flash

rate (flashes

min21)

MESH

(mm)

Change in

size (km2)

Nonsevere 9.9 60.40 54.0 61.68 14.8 60.30 13.3 61.35

Severe 15.9 60.57 96.7 62.78 22.6 60.31 16.3 61.12

FIG. 5. Histograms of (a) flash rate, (b) change in flash rate with

time (DFRDT), and (c) maximum expected size of hail (MESH)

during lightning jumps in severe (red) and nonsevere (blue) storms.
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and a rain rate greater than 105mmh21 in the wind plus

hail and tornadic storms (Table 7). AlthoughMESH, rain

rate, and Top30dBZ are comparable in the wind plus hail

and tornadic storms (Table 7), the tornadic storms exhibit

much greater LMA (122.6 flashesmin21; Table 8) and

2CG flash rates (47.4 flashesmin21; Table 9) than the

wind plus hail storms (60.2 LMAflashesmin21 and 24.1

2CGflashesmin21). Further research is needed to ex-

plain these findings and confirm themoutside of our study

domain.

Correlation coefficients (Table 10) and profile histo-

grams (Fig. 7) quantify relationships between LMA,

NLDN, and radar-derived parameters. Pearson corre-

lation coefficients (r; Wilks 2006) were calculated for

many pairs of lightning and radar parameters. Recall

that subsets of approximately independent samples (i.e.,

every fourth sample; Fig. 2a) were used to compute

correlations. Table 10 contains examples of the many

relationships that are significant at the 0.01 level using

a two-sample t test (Wilks 2006). Although correlations

are better between average storm values than between

maximum values (i.e., r values generally increase by

0.10–0.25), Table 10 is based on maximum storm values

for consistency with the preceding discussion. This

contributes to the somewhat weak correlations de-

scribed below. Profile histograms (Fig. 7) are an alter-

native to scatterplots, and further illustrate relationships

between pairs of lightning and radar parameters.

Radar parameters are correlated with both LMA and

NLDN characteristics (Table 10). For example, MESH,

a composite of several radar parameters, is correlated

with both LMA–FED (0.54) and 2CG flash density

(0.47). WDSS-II estimates MESH by combining radar

reflectivity data with Doppler velocities (for rotation

and storm-top divergence) and RUC near-storm envi-

ronment information (to obtain the reflectivity at spe-

cific isotherm levels). Thus, MESH responds to both the

strength of the updraft and the heights of significant

isotherms (e.g., 2208C). Although MESH is greater in

severe storms than nonsevere storms (Table 7), Fig. 7a

illustrates thatLMA–FED increaseswith increasingMESH

regardless of storm severity. This direct relationship

between LMA–FED and MESH provides further evi-

dence that LMA flash rates are related to updraft strength

(e.g., MacGorman et al. 1989; Steiger et al. 2007; Deierling

and Petersen 2008).

Results indicate that flash-based LMA products (e.g.,

LMA–FED) are better correlated with both CG light-

ning and radar-derived parameters than are source-based

LMAproducts (e.g., VILMA). For example, LMA–FED

is better correlated with both 2CG flash density (0.54)

and MESH (0.54) than is VILMA (0.28 and 0.26, re-

spectively; not shown). These differences are significant

at the 0.01 level based on a Fisher r–z transformation

(Wilks 2006), and suggest that accurate flash counts

are essential for determining relationships between LMA,

CG, and radar-derived parameters. However, the height

of the maximum LMA source density (HtMaxLMA; a

source-based product) is correlated with both 2CG

flash density (0.38) and Top30dBZ (0.48; not shown). The

mean Top30dBZ and HtMaxLMA are both exactly 11.9

(60.06) km (Tables 7 and 8), providing additional evi-

dence of the relationship between the two.

Since 2CG characteristics are indicative of thunder-

storm intensity (e.g., Rudlosky and Fuelberg 2011), they

FIG. 6. Fraction of all 2s lightning jumps that occur in severe

(red) and nonsevere (blue) storms based on MESH thresholds

(e.g., .5mm). For example, .60% of lightning jumps with

MESH . 5mm occur in severe storms.

TABLE 7. Mean radar parameters (6standard errors) for all storms and each category of storm severity within 150 km of the LMA center.

Other than size, each column represents the maximum value in a storm based on 2-min data.

Category Size (km2) MESH (mm) Rain rate (mmh21) Top30dBZ (km)

All 368.3 64.59 14.3 60.24 89.9 60.66 11.9 60.06

Nonsevere 320.7 65.57 10.0 60.17 81.1 60.83 11.1 60.05

Severe 420.0 67.34 19.0 60.39 99.6 60.97 12.8 60.08

Wind 474.8 614.06 15.3 60.52 94.1 61.47 12.9 60.13

Hail 342.0 610.54 15.5 60.76 95.3 62.33 11.7 60.17

Wind 1 hail 390.7 611.25 22.7 60.83 105.6 61.53 13.1 60.14

Tornado 531.3 614.88 24.4 63.57 109.6 63.99 13.2 60.60
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also may provide important information about the evolu-

tion and severity of storms. Results show that 2CG flash

density is correlated with Top30dBZ (0.65; Table 10)

and H30above263K (0.64). Figure 7b reveals that the

frequency of 2CG flashes increases with increasing

storm depth (H30above263K) in both severe and non-

severe storms. Furthermore, Fig. 7c shows that in-

creasing 2CG flash densities correspond to increasing

LMA–FED in both severe and nonsevere storms. Pre-

vious studies have shown that 2CG multiplicity and

estimated peak current are correlated on both the sea-

sonal and regional scales (Orville et al. 2002; Rudlosky

and Fuelberg 2010), and our analysis reveals that 2CG

multiplicity and estimated peak current also are corre-

lated on the storm scale (0.49; not shown). Specifically,

increasing 2CG multiplicity corresponds to increasing

(absolute values of) estimated2CG peak current. Thus,

large multiplicity2CG flashes are most likely to exhibit

the strong estimated 2CG peak current. Figure 7d

shows that this relationship exists in both severe and

nonsevere storms, and is very similar between the two

groups.

The 1CG results suggest that additional caution is

needed to account for misclassified weak 1CG reports.

Weak 1CG reports (estimated peak current ,15 kA)

were omitted from the database because they actually

may be misclassified IC flashes (Biagi et al. 2007).

Nonetheless, estimated 1CG peak current is inversely

correlated with various measures of storm intensity

(Table 10). Specifically, estimated 1CG peak current

exhibits weak negative correlations with radar-derived

parameters (e.g., Top30dBZ; 20.28) and both LMA–

FED and 2CG flash density (20.22 and 20.27, re-

spectively). This suggests that ambiguous1CG reports

(15–20 kA) become more common as storms intensify

(stronger updrafts and taller storms), and that true1CG

flashes (.20 kA) are more common in less intense

storms. These findings illustrate the complexities of in-

terpreting waveforms from 1CG flashes and the in-

fluence of both NLDN measurement capabilities and

meteorological variability on their relative frequency

and distribution (e.g., Rudlosky and Fuelberg 2010,

2011). The inverse relationship between estimated1CG

peak current and storm intensity suggests that additional

quality control measures beyond the customary weak

1CG threshold will be required to accurately document

storm-scale 1CG distributions in this region.

4. Summary and conclusions

More than 1200 severe and nonsevere storms in the

mid-Atlantic region of the United States have been ex-

amined using total lightning, radar, and model-derived

information. Automated Warning Decision Support

TABLE 8. Mean lightning characteristics (6standard errors) for all storms and each category of storm severity within 150 km of the LMA

center. Other than LMA flash rate, each column characterizes the maximum value in a storm every 2min.

Category

LMA flash rate

(flashes)

LMA–FED

(flashes km22min21)

LMA–FID

(flashes km22min21) HtMaxLMA (km)

All 36.0 60.64 1.45 60.035 0.35 60.008 11.9 60.06

Nonsevere 20.0 60.49 0.98 60.027 0.25 60.006 11.6 60.07

Severe 53.4 61.17 1.95 60.059 0.45 60.013 12.3 60.09

Wind 48.3 61.34 1.86 60.084 0.41 60.018 13.0 60.14

Hail 25.2 61.30 1.22 60.109 0.32 60.027 11.4 60.23

Wind 1 hail 60.2 61.74 2.19 60.121 0.51 60.027 12.1 60.15

Tornado 122.6 612.50 3.05 60.662 0.63 60.121 12.7 60.66

TABLE 9. Mean CG characteristics (6standard errors) for all storms and each storm severity category within 150 km of the LMA center.

Other than CG flash rate, each column characterizes the maximum value in a storm every 2min.

Category

CG flash

rate (flashes)

2CG density

(flashes km22min21)

2CG multiplicity

(strokes)

2CG estimated peak

current (kA)

1CG percentage

(%)

All 16.3 60.26 0.13 60.002 4.57 60.08 227.6 60.49 3.3 60.32

Nonsevere 9.8 60.21 0.10 60.002 4.04 60.08 226.5 60.56 3.5 60.36

Severe 23.4 60.48 0.16 60.004 5.01 60.11 228.5 60.65 3.0 60.41

Wind 24.3 60.69 0.17 60.006 5.43 60.18 232.4 61.18 2.9 60.57

Hail 12.1 60.56 0.12 60.007 4.04 60.25 223.9 61.52 3.9 61.44

Wind 1 hail 24.1 60.69 0.17 60.007 4.95 60.20 226.7 61.10 2.7 60.74

Tornado 47.4 64.54 0.18 60.026 5.37 60.84 228.7 65.08 3.4 63.14
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System (WDSS) procedures were developed to create

grids of lightning and radar parameters, cluster indi-

vidual storm features, and data mine lightning and radar

attributes from many storms. The study first examined

the influence of serial correlation, described how auto-

correlation functions help account for serial correlation,

and used autocorrelation functions to compare the

persistence of individual lightning and radar parameters

(section 3a). Section 3b then documented the distribu-

tion of lightning jumps in severe and nonsevere storms,

discussed differences between lightning and radar char-

acteristics in various categories of storm severity (non-

severe, severe wind only, hail only, wind plus hail, and

tornadic), and quantified relationships between lightning

and radar parameters.

Serial correlation complicated the statistical anal-

yses but also provided an opportunity to examine the

persistence of storms. Decorrelation times were found

to vary by parameter, severity, and mathematical oper-

ator (i.e., average versus maximum storm values). Av-

erage storm values are more persistent than maximum

storm values, and both lightning and radar parameters

are more persistent in severe storms than nonsevere

storms. Another important finding is that source-based

Lightning Mapping Array (LMA) products [e.g., verti-

cally integrated LMA (VILMA)] are more persistent

than flash-based LMA products. Despite these differ-

ences, the vast majority of decorrelation times are be-

tween three and six lags, suggesting that consecutive

2-min storm samples (following a storm) are effectively

independent after only 6–12min.

The development and implementation of lightning

jump algorithms motivated an analysis of lightning

jumps alongside radar-derived parameters in severe and

nonsevere storms. Adding a simple flash rate threshold

(10 flashesmin21) to the 2s lightning jump algorithm

(Schultz et al. 2009, 2011) reduces the fraction of non-

severe storms exhibiting jumps from 76.4% to 53.6%.

The 2s algorithm (with threshold) yields 0.92 jumps h21

in nonsevere storms and 1.44 jumps h21 in severe storms.

Less than 15%of lightning jumps in severe storms exhibit

LMA flash rates between 10 and 25flashesmin21, versus

more than 35% having greater than 85 flashesmin21. On

average, lightning jumps in severe storms have greater

total LMA flash rate (totLMA), change in flash rate with

time (DFRDT), and maximum expected size of hail

(MESH) than lightning jumps in nonsevere storms. Fur-

thermore, ,2% (;34%) of lightning jumps in severe

storms exhibitMESH values less than 5mm (greater than

25mm). Only ;25% of all lightning jumps with MESH

less than 5mm occur in severe storms, whereas more

than 60% of lightning jumps with MESH values greater

than 5mm occur in severe storms. Applying a 10-mm

MESH threshold to the 2s lightning jump algorithm

further reduces the fraction of nonsevere storms ex-

hibiting a jump from 53.7% to 37.2%, and decreases the

frequency of jumps in nonsevere storms from 0.92 to

0.61 jumps h21. Results also indicate that the automated

WDSS tracking procedures produce very few erroneous

jumps.

The storm database provided additional insights into

the distribution of lightning and radar characteristics

in severe and nonsevere storms. For example, average

storm values are more representative of climatology

than maximum storm values. Severe storms are larger,

last longer, and produce stronger radar-derived param-

eters and greater LMA and negative cloud-to-ground

(2CG) flash rates than nonsevere storms. Severe wind-

only and hail-only storms appear less intense on aver-

age than the severe wind plus hail and tornadic storms.

Severe hail-only storms exhibit the lowest mean 30-dBZ

echo top (Top30dBZ) and the smallest LMA and 2CG

flash rates. Conversely, severe wind-only storms have

greater LMA and 2CG flash rates, and much greater

2CG multiplicity and estimated peak current than se-

vere hail-only storms. Although most radar parameters

are comparable in wind plus hail and tornadic storms,

the tornadic storms exhibit much greater LMA and2CG

flash rates.

Correlation coefficients and profile histograms dem-

onstrated storm-scale relationships between CG and

LMA characteristics, and between lightning and radar

parameters. For example, both LMA flash extent den-

sity (LMA–FED) and 2CG flash density are directly

related to the MESH. This finding further illustrates the

dependence of lightning occurrence on updraft strength.

Flash-based LMA products are better correlated with

TABLE 10. Examples of Pearson correlation coefficients (r) be-

tween LMA, NLDN, and radar-derived parameters. Correlations

were derived only from points within 150 km of the LMA center.

These correlations are based on maximum values in each storm

every 2min (vs average values), and only include every fourth

sample to account for serial correlation in the consecutive storm

samples. Note that estimated peak current is abbreviated Ip, and

that all relationships shown are significant at the 0.01 level.

LMA–FED 2CG density 1CG Ip

LMA–FED — 0.54 20.22

2CG density 0.54 — 20.27

1CG Ip 20.22 20.27 —

H30above263 0.51 0.64 20.25

H50above273 0.54 0.51 20.14

MESH 0.54 0.47 20.15

Rain rate 0.41 0.45 20.11

LayerAvgRef 0.42 0.43 20.18

Top30dBZ 0.52 0.65 20.28

VIL 0.59 0.61 20.22
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CG lightning and radar-derived parameters than are

source-based LMA products, indicating that accurate

LMA flash counts are required to relate lightning pro-

duction to storm structure, evolution, and severity. Cor-

relations also were shown between 2CG flash density,

multiplicity, and estimated peak current; and estimated

positive CG (1CG) peak current was found to be in-

versely related with various lightning and radar-de-

rived measures of storm intensity.

Results suggest that the LMA, NLDN, and radar

datasets complement one another, and that their com-

bination might help improve the discernment of storm

severity. However, our preliminary findings illustrate

complex relationships that will require physical expla-

nations and confirmation outside the mid-Atlantic states.

Both the ongoing dual-polarization WSR-88D upgrade

and future launch of the Geostationary Operational En-

vironmental Satellite (GOES)-R Geostationary Light-

ning Mapper (GLM; Goodman et al. 2008) will improve

insights into storm-scale processes and the discernment

of storm severity. Our future research will continue to

examine which combinations of lightning and radar

parameters provide clues about the development and

evolution of severe storms as we work to incorporate

near-storm environment information and radar-derived

parameters into operational lightning jump algorithms.
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